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The Time of Flight Detector at CDF
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A Time-of-Flight detector (TOF) has been incorporated into the CDF-II experiment in order to provide charged
kaon identi�cation to improve neutral B meson avor determination. With an expected time-of-ight resolution
of 100 ps, the system will be able to provide 2 standard deviation separation between K� and �� for momenta
p < 1:6 GeV=c, complementing the speci�c ionization energy loss dE=dx measured with the new drift chamber.

1. Introduction

During the Run I data taking period from 1992
to 1996 the CDF experiment at the Fermilab
Tevatron accelerator (

p
s = 1:8 TeV) accumulat-

ed an integrated luminosity of 110 pb�1. Follow-
ing Run I, the CDF detector has been substan-
tially upgraded for the next data collection period
Run II of the Tevatron [1]. The goal of the Teva-
tron is to deliver 2 fb�1 at

p
s = 2.0 TeV in the

�rst two years and more than 15 fb�1 in 5 years
of running.
A time-of-ight (TOF) system is being added

to the detector [2] to improve the particle identi-
�cation capability. The TOF was the most prac-
tical enhancement given the constraints of space

and cost.
The primary purpose of the TOF is to identify

the b avor of B hadrons produced in the collision-
s. An enhancement of the b avor identi�cation
is crucial to improve the statistical precision in
CP violation measurements and B0

s �B0
s oscilla-

tions [1{3].

2. Flavor tagging with TOF

The TOF system will play a crucial role in
determining the b avor (content of b or �b) of
B mesons. CDF developed several methods of
b avor determination or \tagging" during Run I;
in Run II these methods will be extended and new
methods will be added. The �gure of merit to
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quantify the power of a b avor tag is the \total
tag e�ectiveness" �D2, where � is the tag e�cien-
cy and D is the tag dilution, which is related to
the probability P that the avor tag is correct:
D=2P � 1. The statistical error of a CP asym-
metry is proportional to 1=

p
�D2; in addition the

statistical signi�cance of a measurement of an os-
cillation frequency is proportional to

p
�D2.

There are two types of avor tags: opposite side
tags, which are based on identifying the avor of
the second B hadron in the collision to infer the
avor of the B hadron of interest, and same side
tags, which exploit the charge correlation of par-
ticles produced in association with the hadroniza-
tion of a b quark into a B meson. The identi�ca-
tion of a charged kaon can be used as an oppo-
site side tag, since B hadrons produce more K�

than K+ on average through the decay sequence
b! c! s. Kaon identi�cation also enhances the
e�ectiveness in the same side tagging. In partic-
ular, a B0

s (B0
s ) will be produced in association

with a K+ (K�).
The opposite side kaon tag was not established

in Run I. Figure 1 shows that a signi�cant fraction
of kaons from the second B hadron are in the iden-
ti�cation range of the TOF. Combined with the
same side kaon tag, the TOF is expected to dou-
ble the avor tag e�ectiveness for B0

s
=B0

s
mesons

(see table 1).
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Figure 1. Momentum spectrum of kaons
from the B decay opposite the reconstructed
B0=B0!J= K0

s .

2.1. Kaon identi�cation

Particle identi�cation with the TOF is per-
formed by measuring the di�erence (time-of-
ight) in the time of arrival of the particle at the
scintillator with the collision time t0. The mass
m can be determined from the momentum p, the
path-length L, and the time-of-ight t:

m =
p

c
�
r
c2 t2

L2
� 1;

where p and L are measured by the tracking sys-
tem. Figure 2 shows the time-of-ight di�erence
between K=�, p=K and p=�. The average statis-
tical separation is shown as well assuming a time-
of-ight resolution of 100 ps. For comparison the
separation provided by dE=dx is shown too; the
TOF improves substantially K=� separation in
the critical momentum region p<1.6 GeV/c.
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Figure 2. The time-of-ight di�erence (in ps) be-
tween K=�, p=� and K=p.

3. The TOF system

The TOF detector consists of 216 bars of Bi-
cron BC-408 scintillator, which was selected for
its long attenuation length (�e��250 cm) and
fast rise time. The bar dimensions are 279 cm
� 4 cm � 4 cm. They are installed at a radius
of �138 cm from the beam in the 4.7 cm of ra-
dial space between the main drift chamber and
the cryostat of the superconducting solenoid. The
material thickness of tracking systems before the
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Table 1
Projected values for �D2 for Run II with and without TOF. The di�erence in same side tagging e�ective-
ness for the two B0

s
decay modes is due to the trigger.

B0= �B0!J= K0
S

without TOF with TOF

Same-Side (pion) Tag 1.4 1.9

Opposite-Side Kaon Tag � 2.4

B0
s
= �B0

s
!J= � without TOF with TOF

Same-Side (kaon) Tag 0.2 2.6

Opposite-Side Kaon Tag � 2.4

B0
s!D+

s �
+ without TOF with TOF

Same-Side (kaon) Tag 1.0 4.2

Opposite-Side Kaon Tag � 2.4

TOF is less than 10% X0. The pseudo-rapidity
coverage of the system is roughly j�j < 1.

3.1. The photomultipliers: features and as-

sembly

A Hamamatsu R7761, 19-stage, �ne mesh [4]
photomultiplier tube (PMT) is attached to each
end of the scintillator bars for a total of 432 PMT-
s in the system. These tubes can operate in
the 1.4 T magnetic �eld produced by the CDF
solenoid, but with reduced gain. An initial anal-
ysis of the performance of the tubes indicated an
intrinsic timing resolution better than 100 ps and
an average gain reduction factor of 500 in a 1.4 T
magnetic �eld. The tubes may operate at posi-
tive voltages up to 2500 V and exhibit very stable
gains in the magnetic �eld.
The PMTs form part of an assembly that is

contained in aluminum holders that are attached
to the end of the scintillator. This scheme al-
lowed installation of the PMTs after the bars were
installed on the detector and makes it possible
to replace a PMT that fails during data taking.
The PMT assembly (see �gure 3) consists of a
parabolic compact light concentrator (Winston
Cone) that focuses the light from the maximal
diameter of 1.5 inches onto the sensitive area of
the photocathode; a Bicron silicone pad that pro-
vides the optical contact between the cone and
the scintillator; the PMT itself; the PMT base;
the preampli�er; a spring that ensures good opti-
cal contact between the scintillator and the cone;

and a cap containing a printed circuit board for
high voltage, low voltage, and signal connections.

Figure 3. A photograph of the PMT assembly.

3.2. The electronics

A custom designed high voltage base is at-
tached to the PMTs. The di�erential signal
formed from the anode and the last dynode stage
of the PMT is fed through a preampli�er, which
drives a di�erential signal over 10 m of cable to
the front end electronics. There the signal fol-
lows two paths, one for the timing measurement,
and the second for a charge measurement. In the
�rst path, the signal is fed into a leading edge dis-
criminator and the output serves as the start sig-
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nal for the Time to Amplitude Conversion (TAC)
circuit. The TAC is stopped by a common stop
signal produced by a precision clock with an ex-
pected jitter less than 25 ps. In the second path
a gated integration of the charge of the pulse is
used to correct the time measurement for pulse
height dependence.

4. Results from the prototype and conclu-

sions

A TOF test system with 20 130 cm bars was
installed inside the CDF solenoid at the end of
the Run I to learn how to achieve the best timing
resolution (100 ps) from a full system [5]. From
a �t to the TOF mass spectrum of the data (see
�gure 4) the ight time resolution averaged over
all the tubes was 220-250 ps. The low resolution
was mainly due to: reduced statistics (only 5%
coverage), resulting in a poor resolution in the
t0 determination, reduced statistics for the time-
slewing correction, some broken joints in the cou-
pling between the PMTs and the scintillator, and
very low amplitude signals in the 16-stage PMTs
within the 1.4 T magnetic �eld. These problem-
s are addressed in the design of the full system.
Using cosmic ray muons, a resolution of about
110 ps has been obtained with 16-stage PMTs.
The 19-stage PMTs show a comparable timing
performance.
A track matching e�ciency about 95%, and an

occupancy 10-20% (depending on the luminosity)
has been obtained by simulation [6].
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